| Q1.Which | one of the following electronic configurations is that of a transition element? | | |-----------------------|--|----------------| | Α | [Ar] 4s ² 3d ¹⁰ | | | В | [Ar] 4s ² 3d ⁹ | | | С | [A] 4s ² 3d ⁰ | | | D | [Ar] 4s ² 3d ¹⁰ 4p ¹ | (Total 1 mark) | | | | (10001110011) | | | | | | Q2. Which | of the species given below can behave as ligands? | | | | NH ₂ NH ₃ NH ₄ | | | Α | all three | | | В | only NH₃ | | | С | NH₃ and NH₄ + | | | D | NH ₂ and NH ₃ | (Total 1 mark) | | | | (Total 1 mark) | | | | | | 02 (a) | | | | Q3. (a) A CO-O | rdinate bond is formed when a transition metal ion reacts with a ligand. | | | | Explain how this co-ordinate bond is formed. | (2) | | | | | | (b) | Describe what you would observe when dilute aqueous ammonia is added dropwise, to excess, to an aqueous solution containing copper(II) ions. Write equations for the reactions that occur. | | | | | (4) | |-----|--|-----| | | | , | | | | | | (c) | When the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2^+}$ reacts with 1,2-diaminoethane, the ammonia molecules but not the water molecules are replaced. | | | | Write an equation for this reaction. | | | | | (1) | | | | (1) | | | | | | (d) | Suggest why the enthalpy change for the reaction in part (c) is approximately zero. | (2) | | | | () | | | | | | (e) | Explain why the reaction in part (c) occurs despite having an enthalpy change that is approximately zero. | | | | | | | | | | | ••• | |------------------| | | | | | | | | |
••• | | | | | | | | | | | | ••• | | (2) | | (2) | | | | (Total 11 marks) | Q4. | Summarised directions for recording responses to multiple completion questions | | | | | |--|--------------------------------|-------------------------|------------------------|--| | A
(i), (ii) and (iii)
only | B
(i) and (iii) only | C
(ii) and (iv) only | D
(iv) alone | | In which of the following conversions is the copper reduced? - (i) $[Cu(H_2O)_6]^{2+} \rightarrow [CuCl_4]^{2-}$ - (ii) $[Cu(H_2O)_6]^{2+} \rightarrow Cu(H_2O)_4(OH)_2$ - (iii) Cu → CuCl₂ - $(iv) \quad [Cu(H_2O)_6]^{{\scriptscriptstyle 2^+}} \rightarrow CuCl$ (Total 1 mark) **Q5.**Solid iron(II) ethanedioate dihydrate (FeC₂O₄.2H₂O) has a polymeric structure. Two repeating units in the polymer chain are shown. (a) Name the type of bond that is represented by the arrows. (1) (b) In terms of electrons explain how the water molecules, **not** shown in the diagram, form bonds to the iron. | | | | (2) | |-----------|-------|---|-----| | | | | (2) | | | | | | | (c) | | dict the value of the bond angle between the two bonds to iron that are formed nese two water molecules. | | | | | | (4) | | | | | (1) | | | | | | | (d) | man | (II) ethanedioate dihydrate can be analysed by titration using potassium ganate(VII) in acidic solution. In this reaction, manganate(VII) ions oxidise (II) ions and ethanedioate ions. | | | | | 381 g sample of impure FeC ₂ O ₄ .2H ₂ O was dissolved in an excess of dilute | | | | 25.0 | uric acid and made up to 250 cm³ of solution.
cm³ of this solution decolourised 22.35 cm³ of a 0.0193 mol dm⁻³ solution of
ssium manganate(VII). | | | | (i) | Use the half-equations given below to calculate the reacting ratio of moles of manganate(VII) ions to moles of iron(II) ethanedioate. | | | MnO₄⁻ + 8 | 3H⁺ + | 5e⁻ → Mn²⁺ + 4H₂O | | | | F | e ²⁺ > Fe ³⁺ + e ⁻ | | | | C₂O | $_{4^{2-}}$ \longrightarrow $2CO_2$ + $2e^{-}$ | (1) | | | | | | | | (ii) | Calculate the percentage by mass of FeC ₂ O ₄ .2H ₂ O in the original sample. | | | | | (If you have been unable to answer part (d)(i) you may assume that three moles of manganate(VII) ions react with seven moles of iron(II) ethanedioate. This is not the correct ratio.) | | | | | |
(5)
(Total 10 marks) | |------------|------|---|-----------------------------| | | | | (| Q6. | exam | Fransition metal ions can act as homogeneous catalysts in redox reactions. nple, iron(II) ions catalyse the reaction between peroxodisulfate ($S_2O_8^{2-}$) ions e ions. | For
and | | | (a) | State the meaning of the term <i>homogeneous</i> . | | | | | | 40 | | | | | (1) | | | | | | | | (b) | Suggest why ions from s block elements do not usually act as catalysts. | | | | | | | | | | | | | | | | (1) | | (c) | Write an equation for the overall reaction that occurs, in aqueous solution, between $S_2O_{\scriptscriptstyle 8}{}^{\scriptscriptstyle 2-}$ ions and $I^{\scriptscriptstyle -}$ ions. | | |-----|--|--------------| | | | (1) | | (d) | Give one reason why, in the absence of a catalyst, the activation energy for the reaction between $S_2O_8^{2-}$ ions and I^- ions is high. | | | | | (1) | | (e) | Write two equations to show how Fe $^{2+}$ ions can catalyse the reaction between S $_2$ O $_8$ 2- ions and I $^-$ ions. Suggest one reason why the activation energy for each of these reactions is low. | | | | Equation 1 | | | | Equation 2 | | | | Reason | | | | | (3) | | (f) | Explain why Fe ³⁺ ions are as effective as Fe ²⁺ ions in catalysing this reaction. | | | | | | | | (Total 8 ma | (1)
arks) | - **Q7.**Due to their electron arrangements, transition metals have characteristic properties including catalytic action and the formation of complexes with different shapes. - (a) Give **two other** characteristic properties of transition metals. For each property, illustrate your answer with a transition metal of your choice. | | | (4 | |-----|--|----| | (b) | Other than octahedral, there are several different shapes shown by transition metal complexes. Name three of these shapes and for each one give the formula of a complex with that shape. | (6 | | (c) | It is possible for Group 2 metal ions to form complexes. For example, the [Ca(H ₂ O) ₆] ²⁺ ion in hard water reacts with EDTA ⁴⁻ ions to form a complex ion in a similar manner to hydrated transition metal ions. This reaction can be used in a titration to measure the concentration of calcium ions in hard water. (i) Write an equation for the equilibrium that is established when hydrated calcium ions react with EDTA ⁴⁻ ions. | | | | | | | (ii) | Explain why the equilibrium in part (c)(i) is displaced almost completely to the right to form the EDTA complex. | | |-------|---|--------------| (3) | | | | (0) | | | | | | (iii) | In a titration, 6.25 cm³ of a 0.0532 mol dm⁻³ solution of EDTA reacted completely with the calcium ions in a 150 cm³ sample of a saturated solution of calcium hydroxide. Calculate the mass of calcium hydroxide that was dissolved in 1.00 dm³ of the calcium hydroxide solution. | (F. d) | | | | (Extra space) | | | | | | | | (Total 17 ma | (3)
arks) | - **Q8.** Transition metals and their complexes have characteristic properties. - (a) Give the electron configuration of the Zn^{2+} ion. | | Use
ion. | your answer to explain why the Zn²+ ion is not classified as a transition metal | | |----|-------------|--|---| | | Elec | tron configuration | | | | Expl | anation | | | | ••••• | | (| |)) | In te | erms of bonding, explain the meaning of the term <i>complex</i> . | | | | | | | | | | | (| | | | | | |) | | ntify one species from the following list that does not act as a ligand. Explain answer. | | | | | H_2 O^{2-} O_2 CO | | | | Not | a ligand | | | | Expl | anation | | |) | | element palladium is in the d block of the Periodic Table. Consider the following adium compound which contains the sulfate ion. | | | | | $[Pd(NH_3)_4]SO_4$ | | | | (i) | Give the oxidation state of palladium in this compound. | | | | | | (| | | (ii) | Give the names of two possible shapes for the complex palladium ion in this | | | | ` , | compound. | | | Shape 2 | | |---------|-----------------| | | (2) | | | (Total 9 marks) |